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ABSTRACT

We present the results of a 200-ks Chandra observation of part of the Groth Strip region,
using the ACIS-I instrument. We present a relatively simple method for the detection of point
sources and calculation of limiting sensitivities, which we argue is at least as sensitive and
more self-consistent than previous methods presented in the literature. A total of 158 distinct
X-ray sources are included in our point-source catalogue in the ACIS-I area. The number
counts show a relative dearth of X-ray sources in this region. For example, at a flux limit of
10715 erg cm~2 s~!, around 20 per cent more soft-band sources are detected in the HDF-N
and almost 50 per cent more in the ELAIS-N1 field, which we have analysed by the same
method for comparison. We find, however, that these differences are consistent with Poisson
variations at <2o¢ significance, and therefore there is no evidence for cosmic variance based
on these number counts alone. We determine the average spectra of the objects and find a
marked difference between the soft-band-selected sources, which have I' = 1.9 typical of
unobscured active galactic nuclei (AGN), and the hard-band-selected sources, which have
' = 1.0. Reassuringly, the sample as a whole has a mean spectrum of I' = 1.4 &+ 0.1, the
same as the X-ray background. None the less, our results imply that the fraction of sources
with significant obscuration is only ~25 per cent, much less than predicted by standard AGN
population synthesis models. This is confirmed by direct spectral fitting, with only a handful
of objects showing evidence for absorption. After accounting for absorption, all objects are
consistent with a mean intrinsic spectrum of I' = 1.76 £ 0.08, very similar to local Seyfert
galaxies. The survey area is distinguished by having outstanding multiwaveband coverage.
Comparison with these observations and detailed discussion of the X-ray source properties
will be presented in future papers.

Key words: surveys — galaxies: active — cosmology: observations — X-rays: diffuse background
— X-rays: galaxies.

are relatively few. Aside from the deepest surveys in the Hubble

1 INTRODUCTION

Deep X-ray surveys, particularly with Chandra, have had enormous
recent successes in resolving the X-ray background and shedding
light on the nature and evolution of accretion power in galaxies
(e.g. Mushotzky et al. 2000; Giacconi et al. 2001; Barger et al.
2001, 2002; Cowie et al. 2002, 2003). It should be borne in mind,
however, that the number of fields for which both deep Chandra data
and comprehensive supporting multiwavelength observations exist

*E-mail: k.nandra@imperial.ac.uk

Deep Field North (HDF-N) (Brandt et al. 2001a; Alexander et al.
2003, hereafter AO3) and Chandra Deep Field South (CDF-S) (Tozzi
et al. 2001; Giacconi et al. 2001, 2002; Rosati et al. 2002), only two
other fields have been presented with a Chandra exposure in excess
of 150 ks (Stern et al. 2002; Wang et al. 2004).

A particularly well-studied field in wavebands outside the X-ray is
the Groth/Westphal Survey (GWS) area. The original ‘Groth Strip’
survey with the Hubble Space Telescope (HST; Groth et al. 1994)
was complemented by a single deeper pointing, and further data
have been obtained as part of the Canada—France Redshift Survey
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(CFRS; Lilly et al. 1995). Comprehensive imaging with HST/ACS
has now also been approved. The CFRS data have themselves
been superseded by the Canada—France Deep Field (CFDF) survey
(McCracken et al. 2001) and together they provide multiband imag-
ing over much of the field. It has also been covered by deep optical
imaging, and follow-up spectroscopy, in a Lyman break galaxy sur-
vey by Steidel et al. (2003). A further large optical spectroscopy
effort is being undertaken as part of the DEEP and DEEP2 galaxy
redshift surveys (Davis et al. 2003). SCUBA has observed a large
area of the Groth Strip to deep limits for the Canada—UK Deep Sub-
millimetre survey (Eales et al. 2000; Webb et al. 2003), and there
is also coverage by the Infrared Space Observatory (ISO) (Flores
et al. 1999) and in the radio (Fomalont et al. 1991). With a large
number of on-going or future programmes for galaxy evolution in
this field, e.g. DEEP2, Spitzer, Canada—France—Hawaii Telescope
(CFHT), HST/ACS, and current interest in the connection between
active galactic nuclei (AGN) and galaxy formation and evolution,
deep X-ray data are clearly of great value.

Some X-ray data have been obtained in this field with XMM
(Waskett et al. 2004; Miyaji et al. 2004). Here we report Chan-
dra observations, which probe ~5 times deeper in flux, obtained in
a 200-ks exposure with the ACIS-I charge-coupled device (CCD)
camera as prime instrument. This is currently the third deepest Chan-
dra exposure, after the HDF-N and CDF-S.

2 OBSERVATIONS AND DATA REDUCTION

Chandra observed the GWS on three separate occasions between
2002 August 11 and 22, using ACIS-I as the prime instrument. The
S2 and S3 chips of the ACIS-S array were also operating during
the observation, but as these are far off-axis we do not consider the
data further. The sequence number identifying the observations was
900144 and the three observation ID numbers (ObsIDs), along with
some other basic observational information, are given in Table 1.
The aim points of the observations were all very close to each other
and close to the requested target position of o = 14:17:43.6, § =
52:28:41.2. The latter is the position of the deep ‘Westphal’ pointing
of HST/WFPC2 and the centre of the Lyman break galaxy survey
field of Steidel et al. (2003). Our data reduction was performed using
the CXC Chandra Interactive Analysis of Observations (CIA0) data
analysis software, version 3.0.1, and the Chandra calibration data
base (CALDB), version 2.23.

We first used the CIA0 aspect calculator to check for known as-
pect errors in the three observations. No such offset needed to be
applied to the observations. The expectation is therefore that the raw
Chandra astrometry should be good to 1 arcsec. Charge Transfer
Inefficiency corrections and updated gain maps were applied to the
unfiltered (level 1) event files. We applied the standard screening
criteria to the observations, choosing event grades 0, 2, 3, 4 and 6
(the standard ‘ASCA’ grade set), applying the standard Good Time
Intervals (GTIs) and removing flaring pixels and afterglow events.
The filtered (level 2) event files were then energy-selected to permit
events only in the 0.5-8 keV range. Outside this energy range the
background is greatly elevated relative to any source signal.

During Chandra observations, it is known that there can be pe-
riods where the background is significantly higher compared to
typical values. These background ‘flares’ are generally removed
before analysis. To examine our observations for such effects, we
initially performed a crude source detection on the 0.5-8 keV data
for each ObsID separately using the CELLDETECT program, accepting
all sources with signal-to-noise ratio (S/N) greater than 3. Exclud-
ing these detected sources, we generated background light curves
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for each observation. Light curves of these source-subtracted re-
gions were analysed using the CIAO script ANALYZE_LTCRV.SL, which
flags the periods where the background was +3o from the mean
value. Each of the three observations required filtering according to
this prescription — approximately 5.3 ks were filtered from obser-
vation 3305, 5.7 ks from observation 4357 and 25 ks from observa-
tion 4365. The final filtered exposure time after this procedure was
158.5 ks: thus around 20 per cent of the data was lost due to apparent
background flares using the ANALYZE_LTCRV.SL criteria. Examination
of the light curves revealed that, rather than being primarily due to
flaring, the bulk of the background rejection is due to a period of
elevated, but relatively stable and well-behaved, background dur-
ing observation 4365. The average background for the source-free
regions was found to be ~0.78 count s~! for the first 60 ks of that
ObsID, but it rose to an average of 1.38 count s~! thereafter. Rather
than adopt the ANALYZE_LTCRV.SL criteria blindly, we have also de-
fined subjective background criteria to exclude noisy periods for
each observation. These are shown in Table 1 and resulted in a final,
total exposure time of 190.6 ks. We verified post hoc that inclusion
of the additional ~25 ks of data with elevated background in Ob-
sID 4365 does indeed increase the sensitivity. For example, using
WAVDETECT at a probability level of 1077 results in 134 full-band
sources using the full 190.6 ks (see below), whereas there were only
127 sources with the more strictly screened 158.5 ks exposure.

Before co-adding, the relative astrometry was improved by reg-
istering the observations to the coordinate frame of the observation
4357. This was done using bright (S/N > 4) sources within 6 arcmin
of the aim point that were detected in each of the observations us-
ing the script ALIGN_EVT.PL (written by Tom Aldcroft). There were
seven such sources common to observations 4357 and 3305, and
15 common to 4357 and 4365. The data sets were then co-added
using the CIAO script MERGE_ALL. The resulting image was visually
inspected to ensure that merging had not caused smearing or double
peaking of point sources.

The 0.5-8 keV co-added level 2 event file was used to create
images in a number of energy bands (Fig. 1). A specific issue in
source detection is that of the upper energy bound. The HDF-N
team has used an upper energy of 8 keV (e.g. Brandt et al. 2001a),
with the CDF-S team choosing to restrict their search to below 7
keV (Giacconi et al. 2002). In our data set we found the latter to be
more sensitive during source detection. More sources are detected
in, for example, the 0.5-7 keV image compared to the 0.5-8 keV
image, and no extra source is detected in, for example, the 4-8 keV
image compared to the 4—7 keV image. We therefore restrict further
analysis to the 0.5-7 keV (full band, FB), 0.5-2 keV (soft band, SB),
2-7keV (hard band, HB) and 4-7 keV (ultra-hard band, UB) ranges.
Source detection and other analysis proceeded with the images at
the raw resolution of 0.492 arcsec pixel ™.

Effective exposure maps were created for each of these bands
using the MERGE_ALL script, which takes into account the effects
such as vignetting and gaps between chips. The maps were created
at a single energy representative of the mean energy of the photons
in each band: 1 keV for the soft band, 2.5 keV for the full, 4 keV
for the hard and 5.5 keV for the ultra-hard. These energies were
determined post hoc by considering the average photon energy of
the detected sources in each band. The exposure maps cover the
ACIS-I chips 0, 1, 2 and 3 only, and are also unbinned.

3 DATA ANALYSIS

Numerous different techniques have been applied to Chandra deep
surveys to find sources, assess their significance, and calculate their
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Figure 1. Chandra 0.5-7 keV image of the GWS. The image is approximately 18 arcmin on each side and has been smoothed with a Gaussian filter of 1.5
arcsec full width at half-maximum. The aimpoint is shown as a cross. The detected sources are marked as circles with radius equal to the 95 per cent PSF. The
blue circles show detections in the full band, the red are soft band only (with catalogue name also marked). No object is detected exclusively in the hard band,
though many are hard band detections without significant soft band counts.

Table 1. Log of Chandra observations. The columns are as follows: (1) sequence number of the observation; (2) date of beginning of observation; (3) time of
beginning of observation; (4) nominal right ascension of satellite pointing; (5) nominal declination; (6) exposure time of unfiltered, level 1 events file (ks); (7)
permitted background range (count s~! — see text); (8) exposure time after GTI, background filtering, etc. (ks) — total good exposure was 190.6 ks.

Observation Date Time RA Dec. Raw Background Filtered
ID (UT) (UT) (J2000) (J2000) exposure range exposure
(€3] @ 3 “ &) ©) O] ®)
3305 2002-08-11 21:43:57 14:17:43.04 52:28:25.21 29.4 0.62-0.90 27.9
4357 2002-08-12 22:32:00 14:17:43.04 53:28:25.20 86.1 0.60-0.87 80.5
4365 2002-08-21 10:56:53 14:17:43.04 53:28:25.20 84.2 0.55-1.50 82.2
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fluxes and source counts. These tasks are complicated by the fact
that the ACIS-I background is very low, meaning that we have to
deal with Poisson statistics. In addition, the point-source search al-
gorithms often employed (e.g. WAVDETECT, Freeman et al. 2002;
SEXTRACTOR, Bertin & Arnouts 1996) do not necessarily have well-
defined sensitivities, making it difficult to define the flux limit as a
function of area and/or assess the likely number of false sources in
a catalogue. Generally, the tendency is to be conservative and try
to minimize the latter. This has some advantages: in particular, it
means that optical telescope time is not wasted following up ‘spu-
rious’ sources. On the other hand, it runs the risk that many real
sources may be missed. It is known that much information can be
obtained about objects below these conservative thresholds, for ex-
ample using fluctuation analysis (e.g. Miyaji & Griffiths 2002) or
stacking (e.g. Brandt et al. 2001b; Nandra et al. 2002). In addition,
different methods are often employed to identify likely significant
sources, to determine their fluxes and errors, and to determine the
sensitivity limits (see Section 4.1.1). This inconsistency has led us
to develop our own point-source detection procedure.

3.1 Point-source detection

Our point-source detection method is as follows: First, WAVDETECT
was run with a very low threshold probability of 10 on each of
the four images, solely to identify positive fluctuations in the image
that are candidate sources. A total of 1384 possible sources were
identified in the four images, though many of these will have been
detections in multiple bands. The numbers for each individual band
are shown in Table 2. We then extracted counts, again in each image
separately, from circular apertures centred both on the WAVDETECT-
identified positions in that band and on a centroided position, with
an extraction radius equal to 70 per cent encircled energy of the
Chandra point spread function (PSF) at the appropriate mean energy
of the image.

To calculate the PSF radii we used the MKPSF tool to create PSF
images at the representative energy of each of the four bands, at
the position of each candidate source, using the PSF information
in the cALDB PSF library ACISI1998-11-052DPSFIN0002.FITS. We then
extracted a radial profile of the PSF image by extracting counts from
concentric circles centred on the source position out to a radius of
30 arcsec. Assuming all counts to be contained within the 30 arcsec
radius, we then calculate by interpolation the radius at which 70 per
cent of the counts are enclosed. This method can also be adapted to
calculate the 90 per cent radius or other radii.

We note that, particularly very far off-axis in the hard energy
band, the assumption that all counts are contained within 30 arcsec
may not strictly be valid, but any error introduced by this is likely
to be very small.

Background was determined locally from an annulus with in-
ner radius equal to 1.5 times the 90 per cent PSF and outer radius
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100 pixel greater than the inner radius. Detected sources from the
WAVDETECT run were excluded from the background region, as were
zero-exposure pixels. The background counts were then rescaled
to the appropriate source region size, and by the ratio of the mean
value of the exposure map in the source region to that in the back-
ground region. We can then calculate the Poisson probability that
the source region would contain the number of counts it has based
on the predicted background, apply a threshold, and determine what
constitutes a detected source. This is performed for both the WAVDE-
TECT and centroid position of each candidate. If only one passes the
threshold, we adopt that position. If both do, we adopt the position
that gives the larger number of counts.

We estimate the number of trials, and therefore the false source
probability, by calculating the number of the PSF cells that fit into
the total area of the image. This can be defined as

Npix

@
pix

Neial = g 7
TUpsE

i=1

where ap, is the area of a pixel in arcseconds, rpsr is the 70 per
cent radius of the PSF in the same units, and the summation is
over all the pixels N in the image with non-zero exposure. For
ultimate accuracy we would therefore have to calculate the PSF for
>4 million pixels. The PSF calculation is time-consuming, however,
and this would be prohibitive. As we have already calculated the PSF
for a large number of representative positions in the image — for the
candidate sources — to extract their counts, we instead assume that
the PSF radius for each pixel is equal to the closest of these positions
(the ‘nearest-neighbour’ PSF).

As the PSFis energy-dependent, N, depends on the energy band
of the image. It ranges from ~138 000 for the SB, which has the
smallest PSF, to ~94 000 for the UB, and the total of all four images
was 4.6 x 10°. The expected number of false sources is then N yja X
D thresh» WheTe Puesh 1S the threshold Poisson probability below which
a source is considered a detection. We adopt pyesn = 4 x 1070, at
which level we expect approximately 0.5 false sources in each of
the four images, and 1.8 in total. The latter matches the expected
number of false sources using WAVDETECT with probability of 1077,
which is a typical value used to produce point-source catalogues
(e.g. AO3; Wang et al. 2004). For a given pesh, We expect fewer
false sources with our method as we extract photons from cells with
a fixed size and shape, unlike in WAVDETECT where the extraction
region is of arbitrary geometry (Freeman et al. 2002).

3.2 Flux determination

The detection procedure described gives the total counts and back-
ground counts in the 70 per cent PSF region. To convert these for
use in the log N — log S function, we background-subtracted the
counts, divided by the average value of the exposure map in the

Table 2. Number of detected sources. The columns are as follows: (1) detection method; (2) probability threshold; (3) merged
sources; (4) full-band sources; (5) soft-band sources; (6) hard-band sources; (7) ultra-hard-band sources; (8) expected false sources
per band for WAVDETECT (this is N pix X Pinresh) — the expected number of false sources for our method is discussed in the text.

Method Pthresh Merged FB SB HB UB Ntalse

(1 2 3) C)] %) (6) (7 ®
this paper 4 x10°° 158 155 121 100 44 1.8
WAVDETECT 1x 1077 142 134 114 86 41 1.8
WAVDETECT 1 x10°° 170 151 132 101 48 17.7
WAVDETECT 1x107° 251 193 167 130 68 177
WAVDETECT 1x107* 894 379 414 317 274 1765
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source detection cell, and corrected for counts falling outside the
cell. This gives count rates corrected for the majority of the instru-
mental effects, such as the chip gaps, mirror vignetting and the ACIS
quantum efficiency.

The c1A0 exposure maps do not currently account for the degra-
dation in the soft X-ray response of ACIS due to contamination (e.g.
Marshall et al. 2004), the so-called ‘ACISABS’ correction. We deter-
mined this using the AcisaBS model provided in the XSPEC spectral
fitting package. The correction factors for the counts were found to
be 8.8, 13.9 and 0.7 per cent for the FB, SB and HB respectively.
The HB correction is therefore neglected, as is the negligible UB
correction. We calculated the fluxes correcting for the Galactic Ny
of 1.3 x 10% cm™2 and assuming a spectrum of I' = 1.4 for all
the sources in all bands. This is the mean spectrum of the sources
as deduced from analysis of the hardness ratios (see below). We
converted the FB, HB and UB counts to fluxes in standard bands:
0.5-10, 2-10 and 5-10 keV, respectively. The SB flux is quoted for
the same band as the counts, 0.5-2 keV.

For the source catalogue we want to merge sources detected in
more than one band. The individual catalogues for the four bands
were merged using a match radius of <2.5 arcsec for sources within
6 arcmin of the average aim point. Sources with larger off-axis angle
were matched with a radius of 4 arcsec to reflect the larger PSF. Our
analysis indicates that the mismatch probability using these radii,
over the whole field, is less than 1 per cent. We assign the position
in the full band to the object if it is detected in that band, as it
contains most counts and hence the smallest statistical uncertainty.
If undetected in the FB, we adopted consecutively the SB, HB and
UB positions, although in practice no object was detected only in
the HB or UB.

The 70 per cent PSF radius is appropriate for sensitive source
detection, and we calculate the fluxes from this for the log N —
log S function because it maintains consistency between the source
detection, the flux calculation and, as discussed below, the sensi-
tivity calculation. It identifies positions in the image where there
are significant sources of X-rays, and using a relatively small ex-
traction radius optimizes the sensitivity for source detection. Given
the photon-starved nature of the Chandra images, however, it is
preferable to use a larger radius for source photometry, to increase
the number of counts and improve constraints on the flux. For the
source catalogue, after band merging, we therefore also extracted the
counts using a circular aperture of radius equal to the point spread
function 90 per cent encircled energy fraction (FB, HB, UB), or
95 per cent (SB; following A03) and subtracted background counts
from a surrounding annulus as described above. Errors on the counts
were determined according to the prescription of Gehrels (1986).
We used his equation (7) to calculate the effective ‘10 upper bound
on the counts and equation (14) for the corresponding lower bound.

As the source detection procedure has ensured a very high prob-
ability that a real X-ray source exists at the identified position, there
is no need to apply the same thresholding to the cross-band matches
as has been applied to the source detection. Indeed, all that needs to
be ensured is that there are sufficient counts to give a meaningful es-
timate of the flux in that band. Following this merging process, and
again only for the source catalogue, we have re-extracted the counts
in all the bands based on the merged position. If the significance in
the band exceeds the probability equivalent to 30 for a one-tailed
Gaussian distribution (1.3 x 1073), we calculate the counts, fluxes
and errors in that band. Otherwise, we calculate the upper limit to the
counts based on that same probability (i.e. the Poisson equivalent of
a 3¢ upper limit), by determining the number of counts that would
produce a probability less than that value given the background.

3.3 Sensitivity map

The sensitivity map is needed in order to calculate, for example,
the log N — log S function for the field. The aperture extraction
procedure also allows us to determine the sensitivity map for these
observations easily, and in a manner consistent with the source de-
tection.

In order to calculate the sensitivity as a function of the survey
area, and therefore the log N — log S, we must calculate the count
detection threshold for an extraction radius centred at every point
in the image. Again, we have adopted the ‘nearest-neighbour’ ap-
proach. For each pixel, we determine the closest candidate source.
We have already determined the PSF, and the expected background
in the source cell for that position, with the latter simply needing
to be rescaled to the mean exposure in the nominal source cell cen-
tred on each pixel. This rescaling will account, for example, for the
change in sensitivity due to the chip gaps and chip edges. With the
given background, we then determine how many counts would con-
stitute a detection at < 4 x 107 Poisson probability, and convert
that to the flux again using the mean exposure in the cell. We applied
the ACISABS correction as above, and used a spectrum of I' = 1.4 to
convert to flux, just as for the detected sources.

4 RESULTS

4.1 Point-source catalogue

The point-source catalogue is shown in Table 3. At our adopted
detection threshold of 4 x 107%, a total of 158 band-merged sources
are detected, with the numbers detected in the individual bands
shown in Table 2. No object is detected solely in the HB or UB,
although ~25 per cent of the sources remain undetected in the SB.
These are candidate absorbed sources and we discuss their properties
further below. In addition to the source counts, errors and detection
probabilities in each band, the source catalogue also shows the fluxes
in the standard bands, the off-axis angle and the hardness ratio,
defined as

H-S

H+S

where H and S are the hard- and soft-band fluxes corrected to the
on-axis value using the instrument map.

4.1.1 Comparison with WAVDETECT

The most common procedure for producing Chandra source cata-
logues it to use the wavelet-based algorithm WAVDETECT (Freeman
et al. 2002). This algorithm is an extremely powerful and effective
method of finding sources in Chandra images. There are, however,
some disadvantages to its use compared with our adopted method.
For example, as we discuss below, it is not straightforward to con-
struct a sensitivity map from a WAVDETECT run. We first compare the
efficiency of our source detection procedure to that of WAVDETECT.

We performed point-source searches using the CIAO WAVDETECT
algorithm on the four GWS images (full, soft, hard and ultra-hard).
Source detection was performed for each of the four bands using the
appropriate exposure map, using wavelet scales of 1, /2, 2, 2+/2,
4, 4«/1 8, 8+/2 and 16 pixels. The energy at which the PSF size was
calculated in WAVDETECT was set at 1 keV (SB), 2.5 keV (FB), 4 keV
(HB) and 5.5 keV (UB), just as in the creation of the exposure maps.
Initially, the detection probability threshold was set at the typical
value presn = 1077, The WAVDETECT documentation suggests that,
as arule of thumb, one would expect ppresn X N pix SPUrious sources
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in the detection run, where N is the total number of pixels in
the image. The ACIS-I image of the GWS has a total of 4.41 x
10° pixels, so according to this prescription ~0.44 spurious sources
are expected in each of the four images and 1.8 in all four. The
total number of detected sources was 134 (FB), 114 (SB), 86 (HB)
and 41 (UB). This compares to 155, 121, 100, 44 using our method
(Table 2). Thus, our method produces more sources than WAVDETECT
at the probability threshold level that is generally used for ACIS-I
images, when we use a threshold expected to match WAVDETECT in
terms of false sources.

Matching the catalogues shows that only two sources are detected
in the WAVDETECT run that are not identified in our procedure. Con-
versely 19 additional sources are detected with our method that are
not found by WAVDETECT. We have visually inspected all of these
sources and are confident of their reality. Sometimes these new
sources are at the edge of the chips (e.g. ¢2), or in the chip gaps
(c68, c69). In one case (c52, c53) we find two sources very close
together, while WAVDETECT identifies only one as significant. Some
caution needs to be applied in this case.

We also investigated the effect of a lower py,.sn, Values by repeat-
ing the WAVDETECT detection at p e = 1076, 107> and 107, The
results are shown in Table 2. It can be seen that at a probability of
10~° WAVDETECT becomes more sensitive than our method, but with
an unacceptably high fraction (>10 per cent) of spurious sources.
Interestingly, the expected number of spurious sources at the 10~
probability level exceeds the total number of detections at that level
(1384). As many of the latter are actually real sources, there is some
evidence that the WAVDETECT rule of thumb overestimates the num-
ber of false sources. If so, WAVDETECT could be run at probability
levels lower then 10~7 without fear of excessive false detections,
revealing the additional objects found in our analysis. The key point
we make here, however, is that the additional sources we detect are
very probably real, but would have been missed had we blindly used
the typical wAVDETECT threshold of 1077,

4.1.2 Comparison fields

We have also performed source detection for two comparison fields,
the ISO ELAIS-NI1 field, for which Chandra data have been pre-
sented previously by Manners et al. (2003, hereafter M03), and the
2 Ms HDF-N (Alexander et al. 2003). Our standard screening pro-
cedure applied to ELAIS-N1 resulted in an exposure of 70 ks. The
HDF-N analysis is described in more detail by Laird et al. (in prepa-
ration), and is more complicated than that described above, as there
are multiple pointings with very different aim points and roll angles.
Our detection procedure resulted in a total of 145 sources for ELAIS-
N1, and 536 for the HDF-N applying a threshold probability of
4 x 107 as for the GWS. Again these compare favourably to WAVDE-
TECT. MO3 report 127 ACIS-I sources in ELAIS-N1 and A03 report
503 for HDF-N. The analysis of the comparison fields is discussed
further in the Appendix.

4.2 X-ray number counts

We have calculated the detection sensitivity as a function of area
for three of the bands (SB, HB, UB) according to the prescription
described above. This is shown in Fig. 2. The limiting fluxes in each
band, defined as the flux to which at least 1 per cent of the survey
area is sensitive, are 1.1 x 1071° (SB), 8.2 x 101 (HB) and 1.4 x
10715 erg cm™2 s~! (UB). The total survey area is 0.082 deg—2. The
limiting flux in the full band is 3.5 x 10~'* erg cm~2 s~!, which can
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Figure 2. Limiting flux against survey area in the three bands for which
we have calculated the log N — log S function: SB (0.5-2 keV, solid line),
HB (2-10 keV, dashed line), and UB (5-10 keV, dot-dashed line). The total
survey area is 0.082 deg?.

be compared to the limit of the XMM survey given by Waskett et al.
(2004) of approximately 2 x 10715 erg cm=2 s71, i.e. the deepest
part of our Chandra survey probes fluxes about five or six times
deeper than the XMM survey. Averaged over the whole field, we
detect about three times as many sources per unit area as the XMM
survey, but note that the XMM field is around three times larger than
that of ACIS-I, so the total number of sources is very similar.

The cumulative number count distributions (log N — log S) for
the GWS are shown in Fig. 3. For comparison, we also show the
distributions from the ELAIS-N1 deep survey (M03) and the HDF-
N (Brandt et al. 2001a; A03). The source density in the GWS is
generally lower than in the other fields, which may indicate that we
are sampling a relative void in the large-scale structure. ‘Cosmic
variance’ of this kind has been suggested by previous investigations
(e.g. Yang et al. 2003). For example, M03, comparing the ELAIS-
N1 (analysed here) and ELAIS-N2 fields, report that the former has
~30 per cent higher number counts, and attribute this to large-scale
clustering. We can investigate this with our data also. For example,
comparing the soft X-ray log N — log § we can see that, at a repre-
sentative flux level of 10~!%, above the level where incompleteness
and Eddington bias should seriously affect the results, the ELAIS-
N1 counts are ~50 per cent higher than those in the GWS. When
we consider the expected Poissonian errors, however, we find the
source densities of 827 £ 100 and 570 4 84 deg~? are consistent at
the 20 level. The differences in number counts in the hard band are
less significant than this.

4.3 Spectral properties
4.3.1 Hardness ratios

The hardness ratios of all objects in our sample are given in Table 3,
and our relatively lax criterion for cross-band detection means that
this quantity is defined for the great majority of sources. This allows
us to calculate the mean hardness ratio for the entire sample, and
also for objects detected in the various sub-bands. As discussed
by Nandra et al. (2003), when attempting to characterize the mean
spectrum of an X-ray survey sample it is preferable to adopt the
unweighted average of the hardness ratio. This is because using the
weighted average, or count stacking, can mean that the result is
dominated by a few bright sources. This is particularly important
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Figure 3. Cumulative log N — log S functions for the SB, HB and UB
for the Groth Strip and the two comparison fields (ELAIS-N1 and HDF-
N). The faintest flux point for each field shows the Poisson error bar. The
source counts in all three bands are generally lower in the GWS compared
to the comparison fields, showing that it samples a relative void. However,
even comparing to the field with the highest source density (ELAIS-N1),
we find no significant evidence that the number counts differ beyond the
expected Poisson variations (see text). The source counts show the effects
of incompleteness at the faintest fluxes probed by each survey.

when it is suspected that the spectral properties might depend on
flux, as has been suggested for Chandra samples (e.g. Giacconi et al.
2001). We find the following unweighted mean hardness ratio for
sources detected in the various bands: —0.19 4+ 0.05 (FB), —0.42
£ 0.03 (SB), —0.01 £ 0.05 (HB) and —0.06 £ 0.07 (UB). The
hardness values in Table 3 have been calculated based on the counts
corrected to on-axis values. They have not been corrected for the
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ACISABS effect, as we apply this when calculating the fluxes. We have
considered this correction, however, when converting the hardness
values to effective spectral indices, which we have performed using
PIMMS. They are I' = 1.4 & 0.1 (FB — note that the same value is
found when considering the whole sample of 158 sources), I' =
1.85+0.05(SB), T =1.0+ 0.1 (HB) and T" = 1.1 £ 0.1 (UB).
There is clearly a highly significant difference in the mean spectrum
of sources selected in the soft and hard bands (~7.50).

4.3.2 Spectral fitting

In addition to hardness ratio analysis, we have also performed direct
spectral fitting on our sources. Spectra were extracted using the CIAO
tool PSEXTRACT for the detected sources, using the 95 per cent PSF
region for the full band, and the background using an annular region
as described for the source detection. We performed spectral fitting
only on sources with >80 source plus background counts, to give at
least four bins with a minimum of 20 counts per bin, permitting a x>
fitting procedure. A total of 56 sources satisfied this criterion. We
performed the fits in XSPEC, starting with a simple power law with
Galactic absorption (Ny = 1.27 x 10%* cm~2; Dickey & Lockman
1990). This proved a formally satisfactory fit in the great majority
of cases, with only nine sources being inconsistent with this model
at >99 per cent confidence. The photon index (I') is plotted against
flux in Fig. 4.

The objects display a very wide range of photon indices, from
I' = —0.5 to 2.2. They are completely inconsistent with a single
universal index, a hypothesis rejected at >99.99 per cent confidence.
The unweighted average index, of I' = 1.29 £ 0.08, is very much
consistent with that determined from the hardness ratio analysis, so
while the spectral subsample tends to be brighter it is representative
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Figure 4. Power-law photon index versus full band flux for the 56 sources
with >80 total counts (FB) in a region defined by the 95 per cent PSF. The
upper panel shows the results with Galactic Ny only. A wide dispersion
of photon indices is observed, the data being completely inconsistent with
a constant (reduced x2 = 12.8). The mean index (unweighted) is consis-
tent with that derived from the hardness ratio analysis and shows that these
sources are representative of the full sample, and of the objects that make up
the XRB. When additional absorption is included (lower panel), the disper-
sion reduces substantially, with the objects now being consistent with a single
index of I" ~ 1.8, similar to local Seyferts (Nandra & Pounds 1994). Only a
relatively small proportion of the objects require this additional absorption,
however. Fluxes in the lower panel are corrected for intrinsic absorption.
A single point with best-fitting I' ~ 7 and very large error bars has been
omitted for clarity.
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of the sample as a whole. The weighted average index is ' = 1.51
=+ 0.02, slightly softer than the X-ray background (XRB) but still
consistent with the mean spectrum from the hardness ratio analysis.

Nine of the objects show a spectrum inconsistent at >99 per cent
confidence with a single power law absorbed by the Galactic Ny
based on their x2. The most likely reason for this, and the hardness
of the spectra, is absorption. We have tested this by introducing a
neutral absorber into the model. As we do not have redshifts for the
majority of the objects at present, we fix the absorber at z = 0. This
means that the derived column densities from the fits will not be
accurate and we do not quote them. The fits should, however, give
a reasonably accurate test of whether or not absorption is present
in a given object, and of the effects of absorption on the power-
law index. This is because the photoelectric cross-section in the soft
X-rays is dominated by K-shell absorption by moderate-Z elements,
which has an approximate E~* form for a wide range of atomic
number.

When absorption is allowed in the fit, a significant improvement
(at >99 per cent confidence based on the F-test) is found in eight
objects. A more marginal improvement seen in some others is none
the less likely to indicate the presence of absorption — for example,
c17 shows an acceptable fit when absorption is included, where it
was previously unacceptable. Indeed, no source exhibits a spectrum
inconsistent with this absorbed power-law model at >99 per cent
confidence. More complex models are not therefore required, nor
would they be particularly meaningful without the redshifts. In the
absorbed model, the objects are now consistent with a universal
index, of ' = 1.76 + 0.08.

Absorption clearly has a very substantial effect on the mean spec-
tral properties, but as in the hardness ratio analysis the number of
objects with significant absorption appears small. Only ~15 per
cent of the spectral subsample (8/56) shows clear evidence for Ny
above the Galactic value. Some of this may be due to poor spectral
quality — the weakest source in which absorption is detected has
~160 counts, and we may simply be insensitive to absorption in
objects fainter than this. Even if we restrict the analysis to objects
with more counts than this limit, however, we still find only 25 per
cent of objects (8/32) with significant absorption.

5 DISCUSSION

We have presented a source catalogue, number counts and spectral
properties for the 200-ks deep survey of the GWS performed by
Chandra. There have been a large variety of methods applied in the
literature to identify sources, assign significances, determine fluxes
and errors, and determine limiting sensitivities. Finding none of
these entirely satisfactory, we have developed our own procedure
based on pre-identification of candidate sources with WAVDETECT,
and a simple aperture extraction using the 70 per cent PSF and
a local background to determine significances. This procedure is
statistically well defined, and it finds more sources than WAVDETECT
— arguably the most common source detection procedure used in
the literature. A total of 158 independent sources are detected in our
band-merged catalogue, with the great majority (>75 per cent) being
detected in the soft band and no source being detected exclusively
in the hard or ultra-hard bands.

Observations have suggested significant differences in the num-
ber counts from field to field, which have been attributed to ‘cosmic
variance’ (e.g. Cowie et al. 2002; Yang et al. 2003), but one study
(Kim et al. 2004) has reported no such effect. Clearly it is impor-
tant to investigate this issue further with deep survey data, and we
have done so with the GWS. While the log N — log S function shows

lower counts than our comparison fields (by ~50 per cent compared
to ELAIS-N1), we find the statistical significance of the difference
in number counts to be weak (<20). This is not entirely surprising
in that, at the fluxes where the log N — log S is generally compared,
the typical number of detected Chandra sources per Chandra field
is very small (e.g. ~25 at 107'* erg cm™2 s~! in the hard band).
Large differences are therefore expected purely from Poisson vari-
ations. Greater source numbers — and hence lower Poisson noise —
are present at fainter fluxes, but here the number counts appear to
be consistent. As discussed by Yang et al., the main evidence for
‘cosmic variance’ from the number counts comes from only two
fields (including the CDF-S), which show low source numbers and
apparently sample a relative void and only in the hard band. It is
clear also from the presence of ‘spikes’ in the redshift distribution
of X-ray-selected sources (e.g. Barger et al. 2002; Gilli et al. 2003)
in deep surveys that there must be significant field-to-field varia-
tions in the X-ray source population. We simply point out here that
even large variations (~50 per cent) in the number counts do not
necessarily mean that there is significant cosmic variance, and we
await further observations to confirm or deny the presence of these
X-ray voids.

Perhaps the most interesting result from our current analysis
comes from the spectra. The whole sample (essentially the FB
sources) shows a mean spectrum of I' = 1.3 —1.5 from both the
hardness ratio and direct spectral analysis. This is consistent with
that of the XRB, which is encouraging as our survey resolves the ma-
jority of that background. On the other hand, we find a very marked
difference between the mean spectra of soft and hard X-ray-selected
sources. The former have I' = 1.9. This mean spectrum is also in
agreement with the average spectrum of (brighter) ROSAT -selected
AGN (Georgantopoulos et al. 1997; Blair et al. 2000). It is also typi-
cal of the intrinsic spectrum of local AGN (Nandra & Pounds 1994).
The implication is that these soft X-ray sources suffer essentially no
obscuration. On the other hand, the hard X-ray-selected (2-7 keV)
sources show I = 1.0, significantly flatter than the XRB. Once again
this shows good consistency with brighter hard X-ray-selected sam-
ples, e.g. the 5-10 keV selected SHEEP sample (Nandra et al. 2003).
The surprise comes when we consider the fact that over 75 per cent
of the whole sample is detected in the soft band, and hence rela-
tively unobscured with mean I' = 1.9. Only a very small (25 per
cent) population of heavily obscured objects detected in the hard
band are therefore required to flatten the XRB to its observed level.

Direct spectral fitting of our Chandra data confirms this result,
which is also found in XMM samples, which probe slightly brighter
fluxes (Piconcelli et al. 2003; Georgantopoulos et al. 2004). Our
survey probes deeper into the populations producing the XRB and
shows clearly and directly that the majority of objects produc-
ing that background are relatively unobscured in the X-ray. This
is completely at odds with standard population synthesis models
for the XRB (e.g. Comastri et al. 1995; Gilli, Risaliti & Salvati
1999; Gilli, Salvati & Hasinger 2001), which predict that obscured
sources should dominate. The basis of these synthesis models is the
Type I/1I unification scheme, which has proved so successful in ex-
plaining the properties of local AGN (Antonucci & Miller 1985).
Given the lack of correspondence between X-ray and optical mea-
sures of obscuration that is emerging in X-ray-selected objects (e.g.
Pappa et al. 2001; Comastri et al. 2001; Nandra et al. 2004), the
basis of these synthesis models is also in doubt and they need to be
examined completely afresh (see also Ueda et al. 2003).

The spectral fitting shows that, after accounting for the effects of
absorption in the few objects that require it, the objects in our sample
are all consistent with a single power-law slope, which has a mean of
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I' =1.76 £ 0.08. This can be compared, for example, to the intrinsic
spectrum of local Seyfert galaxies observed by Ginga, I' = 1.95 +
0.05 or ASCA, " = 1.91 £ 0.07 (Nandra & Pounds 1994; Nandra
et al. 1997). These include the effects of both (sometimes ionized)
absorption and X-ray ‘Compton reflection’. While the former may
be crudely accounted for in our fits, the latter is not. If Compton
reflection is present in the Chandra spectra — which the spectral
quality does not allow us to identify — then the intrinsic spectrum
of the objects is likely to be steeper by AI' ~ 0.1. Arguably the
cleanest comparison is with the ASCA Seyferts without accounting
for reflection, which show I' = 1.79 &£ 0.07, completely consistent
with our derived Chandra mean. The existence of this ‘canonical’
X-ray spectrum (e.g. Turner & Pounds 1989) argues for a common
emission process for the X-rays in the entire AGN population.

A final intriguing note is that the mean spectrum of the hard-
band-selected sources is consistent with that expected from one
dominated by Compton reflection (e.g. Matt et al. 1996, 2000). Thus
a significant population of ultra-obscured AGNs is not ruled out,
and indeed is supported by our analysis. Such objects are the likely
origin of the peak in the XRB (Ueda et al. 2003; Worsley et al. 2004),
which occurs at ~30 keV (Marshall et al. 1980), and may make a
significant contribution to the total discrete energy budget of the
Universe (Fabian & Iwasawa 1999). The 75 per cent of our sample
that is detected in the soft band, with typical I' = 1.9, is likely to
make a negligible contribution to the XRB peak unless the spectrum
changes radically as a function of energy. It is therefore possible that
— despite the extraordinary success of the Chandra deep surveys —
the majority of the energy density in the XRB remains unresolved.
The final mystery of the origin of the XRB therefore awaits deep
surveys with a future, sensitive, hard X-ray telescope.
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APPENDIX A: SOURCE DETECTION
IN HDF-N AND ELAIS-N1 FIELDS

As described above, in order to make a fair comparison between
the number counts in the GWS with other fields, we have applied
our source detection technique to two comparison fields, ELAIS-N1
(Manners et al. 2003) and the 2 Ms HDF-N survey (Alexander et al.
2003). For completeness, we describe the results of our analysis in
more detail here, and compare them to the previous work.

Al ELAIS-N1

As stated above, applying our analysis method to the ELAIS-N1
data resulted in 145 band-merged sources, with 132 FB, 116 SB,
88 HB and 29 UB. For comparison, in the published catalogue of
MO3 there are 124 band-merged ACIS-I sources (i.e. excluding six
ACIS-S sources identified by M03; we do not consider the S chips in
our analysis). Matching the two source lists shows that we identify
all the MO3 sources, but detect 21 additional sources. These extra
sources are shown in Table Al. They were visually inspected to
ensure that they were likely to be real and not artefacts.

There are a number of differences in the analyses presented by
MO3 and us. MO3 used the pipeline-processed EVT2 files, whereas
we used our own processing. We have filtered out background flares,
so our exposure time of 70.0 ks is shorter than the 71.2 ks of MO3.
They performed source detection on the binned image, whereas
we use the raw one. Finally, we adopted an upper limit of 7 keV
whereas their source detection used the data up to 8 keV. Given the
fact that we detect all the ACIS-I sources in M03 and 21 additional

sources, we are confident that our procedure has resulted in a more
comprehensive point-source catalogue in the case of ELAIS-N1.

A2 HDF-N

Running our source procedure at a threshold of 4 x 1076 on the 2
Ms exposure of the HDF-N resulted in 536 band-merged sources.
There are 485 FB, 432 SB, 312 HB and 187 UB sources. Matching
this to the main catalogue of Alexander et al. (2003), which contains
503 sources, gives 461 sources in common. We detect 75 sources
that AO3 do not, and these are listed in Table A2. A03 detect 42
sources that are not significant in our analysis. We note that our
analysis does not necessarily cast doubt on the reality of these 42
sources — weak and slightly extended sources could be missed by
our method, and we use circular aperture extraction rather than the
true PSF shape. It is highly likely, however, that the additional 75
sources we detect that AO3 do not are also real. A large fraction
(~40 per cent) of the non-common sources are close to the chip
edges or the chip gaps, where any detection procedure will have
difficulty and produce mixed results.

Again there are differences between our basic analysis and that
of A03, which can also account for the differences in the source
lists. Our screening was slightly more stringent (1.86 Ms exposure
versus 1.95 Ms in A03), and AO3 used an upper bound of 8 keV,
rather than 7 keV. They also performed source detection in a total
of seven bands, not four, and repeated the analysis for the restricted
ACIS grade set, as well as the standard ASCA grade set we use
here.
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